Several therapeutic interventions involving different modes, intensities, and demands designed to when exercising in a gym setting are currently being used to improve mobility and balance in a clinical population. These exercises are characterized by different modes, intensities, and demands on the individual. One such exercise intervention that may be beneficial for improving mobility and balance utilizes vibratory stimulation. Different therapeutic and rehabilitation fields have studied the effect of vibratory stimulation on the neuromuscular system. It has therefore evolved into full-body training, which is known as whole-body vibration (WBV). WBV is targeted at individuals who have difficulty in walking and those who may be less inclined to participate in more vigorous training. WBV has been shown to improve gait and balance in patients with multiple disease conditions, such as cerebral palsy, multiple sclerosis, and stroke. A recent systematic review and meta-analysis by Lam et al. examined the effects of WBV on outcomes related to balance, mobility, and falls among older adults without known medical diseases. Overall, these investigations showed some evidence for improving improvement in balance and mobility outcomes; however, these effects were inconclusive. Parkinson’s disease is one condition in which WBV may enhance mobility and balance. The effects of a vibration-type stimulus in individuals with Parkinson’s disease were first identified when patients displayed relatively fewer symptoms when they were travelling on a train. The purpose of this study was to conduct a systematic review of published literature on the use of WBV on mobility and balance outcomes in individuals with Parkinson’s disease and its effect on their mobility and balance outcomes. The primary aim of this investigation, i.e., our primary aim, was to examine whether if the existing WBV studies showed a consistent positive effect on mobility and balance outcomes.